The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice

نویسندگان

  • Julian Pardo
  • Christin Urban
  • Eva M. Galvez
  • Paul G. Ekert
  • Uwe Müller
  • June Kwon-Chung
  • Mario Lobigs
  • Arno Müllbacher
  • Reinhard Wallich
  • Christoph Borner
  • Markus M. Simon
چکیده

Aspergillus fumigatus infections cause high levels of morbidity and mortality in immunocompromised patients. Gliotoxin (GT), a secondary metabolite, is cytotoxic for mammalian cells, but the molecular basis and biological relevance of this toxicity remain speculative. We show that GT induces apoptotic cell death by activating the proapoptotic Bcl-2 family member Bak, but not Bax, to elicit the generation of reactive oxygen species, the mitochondrial release of apoptogenic factors, and caspase-3 activation. Activation of Bak by GT is direct, as GT triggers in vitro a dose-dependent release of cytochrome c from purified mitochondria isolated from wild-type and Bax- but not Bak-deficient cells. Resistance to A. fumigatus of mice lacking Bak compared to wild-type mice demonstrates the in vivo relevance of this GT-induced apoptotic pathway involving Bak and suggests a correlation between GT production and virulence. The elucidation of the molecular basis opens new strategies for the development of therapeutic regimens to combat A. fumigatus and related fungal infections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence.

BACKGROUND Gliotoxin is a epipolythiodioxopiperazine toxin that is made by the filamentous fungus Aspergillus fumigatus. Gliotoxin has a wide range of effects on metazoan cells in culture, including induction of apoptosis through inhibition of Nf-kappaB, and inhibition of superoxide production by phagocytes. These activities have led to the proposal that gliotoxin contributes to pathogenesis du...

متن کامل

Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone.

Gliotoxin is an immunosuppressive mycotoxin long suspected to be a potential virulence factor of Aspergillus fumigatus. Recent studies using mutants lacking gliotoxin production, however, suggested that the mycotoxin is not important for pathogenesis of A. fumigatus in neutropenic mice resulting from treatment with cyclophosphomide and hydrocortisone. In this study, we report on the pathobiolog...

متن کامل

GliA in Aspergillus fumigatus is required for its tolerance to gliotoxin and affects the amount of extracellular and intracellular gliotoxin.

Gliotoxin is an important virulence factor of Aspergillus fumigatus. Although GliA putatively belongs to the major facilitator superfamily in the gliotoxin biosynthesis cluster, its roles remain unclear. To determine the function of GliA, we disrupted gliA in A. fumigatus. gliA disruption increased the susceptibility of A. fumigatus to gliotoxin. The gliT and gliA double-disrupted mutant had ev...

متن کامل

Aspergillus mycotoxins and their effect on the host.

Aspergillus fumigatus is known to produce various immunosuppressive mycotoxins including gliotoxin. However, none of these mycotoxins has been confirmed as being directly related to the pathogenesis of aspergilli. Recent studies have made substantial progress in the determination of mycotoxins as virulence factors. Gliotoxin was found to be produced much faster than previously believed under ce...

متن کامل

GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence.

Gliotoxin is a nonribosomal peptide produced by Aspergillus fumigatus. This compound has been proposed as an A. fumigatus virulence factor due to its cytotoxic, genotoxic, and apoptotic properties. Recent identification of the gliotoxin gene cluster identified several genes (gli genes) likely involved in gliotoxin production, including gliZ, encoding a putative Zn(2)Cys(6) binuclear transcripti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 174  شماره 

صفحات  -

تاریخ انتشار 2006